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Abstract— Large Language Models (LLMs) have become
increasingly proficient in generating human-like text, yet their
widespread deployment raises significant concerns, including
disseminating fake information, privacy violations, and aca-
demic dishonesty. Detecting LLM-generated text is vital for
mitigating these risks and is often framed as a binary clas-
sification task. Although zero-shot textual analysis methods
have gained popularity due to their generalizability, they
face key challenges: (1) limited ability to capture holistic
and granular consistency and (2) insufficiently comprehensive
textual analysis, particularly regarding syntax and lexical
patterns. To address these problems, we propose a novel
Multi-faceted Granular Analysis Framework (MFGAF), which
leverages Rewriting Concordance and Completive Concordance
to detect LLM-generated text through multi-granular textual
dissection. Specifically, MFGAF is designed with two perspec-
tives, Rewriting and Completion, to comprehensively capture
global and local LLM-generated features. Additionally, for each
perspective, a Multi-Granular Textual Dissection mechanism is
constructed to thoroughly analyze LLM-generated text. Finally,
MFGAF leverages LLMs to achieve adaptive integration of text
analysis results and reflect on the correctness of these results.
Our method achieves an average F1 improvement of 3.06%
compared to the best baselines, demonstrating its robustness
and effectiveness through extensive evaluations.

I. INTRODUCTION

Large Language Models (LLMs) have shown remarkable
capabilities in text generation tasks, from question answering
to code generation. However, their widespread deployment
and accessibility introduce significant risks. For instance,
LLMs can facilitate cybersecurity threats such as phishing,
propaganda, and social engineering, and in educational set-
tings, they may contribute to academic dishonesty [1], [2].
Additionally, LLM-generated code can introduce software
vulnerabilities [3], and the generated content may pollute
training data for future models [4]. Therefore, detecting and
auditing LLM-generated text is critical for mitigating these
adverse effects.

As in prior work, the problem of detecting LLM-generated
text is commonly framed as a binary classification task:
determining whether a text segment is generated by an LLM
or authored by a human [5]. Existing detection methods are
typically categorized into three types. First, feature-based
methods rely on model output logits or losses, but such in-
formation is often inaccessible in commercial LLM services,
leading to surrogate-based approximations and performance
limitations [6], [7]. Second, while supervised fine-tuning
trains classifiers on labeled data, it is prone to overfitting and

1Jia Chen and Haizhou Wang are with School of Cyber Science and
Engineering, Sichuan University, Chengdu, China.(*Corresponding author,
email: whzh.nc@scu.edu.cn)

limited generalization [5]. Third, zero-shot textual analysis
methods examine linguistic features, such as grammar and
style, to detect discrepancies between LLM- and human-
written text [8]. These zero-shot methods have become
prevalent due to their convenience and generalizability.

Despite the progress of zero-shot methods, several chal-
lenges remain:

1) Limited Capture of Holistic and Granular Con-
sistency: Some methods detect LLM-generated text
via rewriting, assuming such text exhibits consistent
patterns before and after rewriting [9]. However, they
often overlook cases where only part of the content is
modified or refined, resulting in incomplete detection.

2) Lack of Comprehensive Textual Analysis: Although
LLM-generated text often maintains semantic consis-
tency across rewrites [10], finer-grained aspects be-
yond semantics—such as syntax and vocabulary pref-
erences—are frequently ignored, limiting the depth of
analysis.
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Fig. 1.  Consistency Analysis of LLM-generated Text: Rewriting vs.
Completive Concordance Perspectives.

To address these challenges, we propose a novel Multi-
Faceted Granular Analysis Framework (MFGAF)' for ro-
bust and comprehensive LLM-generated text detection. Our
method is grounded in a key observation: although LLMs
excel at producing human-like content, their outputs exhibit
consistent patterns across semantics, syntax, lexical choice,
and reasoning—often distinct from those of human authors.
These consistencies persist even when the text is rewritten,
paraphrased, or completed. MFGAF introduces two com-
plementary analytical perspectives—Rewriting Concordance
and Completive Concordance—as illustrated in Fig. 1. We
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further apply a multi-granular textual dissection across lin-
guistic levels, and use weighted concordance scores from
both perspectives to inform the final detection decision.

Our contributions can be summarized as follows:

« We propose the Multi-faceted Granular Analysis Frame-
work (MFGAF), which integrates dual perspectives
(Rewriting and Completive Concordance) with multi-
granular analysis (semantics, syntax, lexical, reasoning)
for LLM-generated text detection.

e We design key modules: Multi-faceted Concordance
analysis and Multi-granular Textual Dissection, which
effectively capture holistic and fine-grained textual con-
sistencies to enhance detection performance.

o We develop an innovative LLM-based Resonance Score
Calculation module that adaptively integrates multi-
dimensional analysis results and reflects on their cor-
rectness, improving robustness and generalizability in
zero-shot scenarios.

II. RELATED WORK
A. Large Language Models

Large Language Models have revolutionized numerous
natural language processing tasks, including machine trans-
lation, question answering, and text generation [11]. Recent
advancements have enabled LLMs to follow specific in-
structions through instruction-tuning [12]. LLMs are widely
deployed in applications such as chatbots, content creation
tools, and automated systems [11], [13]. However, concerns
regarding their misuse have emerged, particularly in con-
texts like academic dishonesty, misinformation generation,
and malicious automation [2], [14], [15]. As these models
become increasingly accessible, ensuring ethical use and
reliable detection mechanisms is critical.

B. LLM-Generated Text Detection

Nowadays, LLM-generated text detection approaches are
divided into active (e.g., watermarking [16]) and passive
methods; the former suffers from text degradation and
rephrasing vulnerabilities, while the latter analyzes inherent
text properties without model modification.

Passive detection employs either: 1) White-box techniques
using model internals (log probability [17], entropy [18]),
limited by requiring model access; 2) Black-box methods
analyzing semantic/stylistic patterns, including n-gram anal-
ysis (DNA-GPT [19]), rewriting differences (Raidar [20]),
and probability curvature (DetectGPT [8]). Recent advances
focus on enhancing black-box robustness through zero-shot
adaptations [21].

II1. METHODOLOGY

To overcome the limitations of existing methods that
focus on single transformations or coarse-grained features,
MFGATF adopts a novel framework built upon the core prin-
ciples of complementary perspectives (Rewriting Resonance
Analysis and Completion Resonance Analysis) and deep
multi-granular analysis. This design enables capturing subtle
inconsistencies often missed by prior work [9]. MFGAF

detects LLM-generated text by analyzing consistent patterns
across multiple linguistic dimensions, including semantics,
syntax, lexical choices, and reasoning, observed in text
transformations. Uniquely, MFGAF leverages the analytical
power of LLMs themselves to dynamically integrate evi-
dence from these dimensions, ensuring adaptability across
various domains. A schematic overview of the MFGAF
framework is presented in Fig. 2.

A. Problem Definition

MFGAF is designed to tackle the problem of detecting
LLM-generated text by capturing and analyzing inherent
consistencies across multiple dimensions during text transfor-
mation. Specifically, it examines two scenarios: text rewriting
and text completion. In both scenarios, LLM-generated text
tends to exhibit predictable patterns compared to human-
authored text. The objective is to identify and quantify these
predictable patterns across four key linguistic dimensions:
semantics, syntax, lexical choices, and reasoning, leveraging
deviations from human norms for detection.

B. Dual-view Text Processing

MFGAF operates through two primary, complementary
perspectives: Rewriting Resonance Analysis (RRA) and
Completion Resonance Analysis (CRA). Both perspectives
employ specialized text processing procedures designed to
elicit LLM-specific consistency patterns.

1) Text Rewriting Procedure: The RRA perspective
probes the LLM’s tendency towards stylistic or structural
normalization while preserving core meaning. It tests con-
sistency under meaning-preserving paraphrase. We begin by
taking the original input text 7;,, and using a robust large
language model, such as GPT-4, to generate its rewritten
counterpart, Tiogified- Controlled rewriting prompts ensure
the process retains original semantic content while encour-
aging stylistic variations. This step isolates the the linguistic
consistencies between the original and modified text.

2) Text Masking and Completion Procedure: The CRA
perspective challenges the LLM’s ability to maintain coher-
ence and contextual appropriateness when generating text
from partial input. A portion (e.g., a sentence or major
clause) of the original text Ti,y, is masked, resulting in Tiak.
The LLM then fills the masked regions, producing 7tompleted-
This evaluates consistency in constrained generative settings.

C. Multi-granular Textual Dissection

Once the rewriting or completion is performed, we pro-
ceed with a Multi-granular Textual Dissection across four
linguistic dimensions to capture detailed consistencies from
both perspectives. The analysis involves the following:

1) Semantic Resonance Analysis (SRA): To assess se-
mantic consistency, we use Sentence-BERT [22] to generate
dense embeddings for both 71,y and Tiansformed- The semantic
resonance score is calculated as the cosine similarity:

Scoregem = COS(Embed<Traw)7 Embed(ﬂransformed))a (1
where Embed(T") denotes the embedding of text T'.



Rewritten text:
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Fig. 2.

2) Syntactic Resonance Analysis (SyRA): This dimension
captures structural consistencies. We extract syntactic fea-
tures using spaCy [23], including dependency parse trees,
average clause length, syntactic tree depth, and Part-of-
Speech (POS) tag distributions. The score is computed by
fsyntacticAnalysis» Which incorporates the normalized tree edit
distance and the L2 differences in the feature vectors:

2

3) Lexical Resonance Analysis (LRA): This assesses vo-
cabulary overlap. After filtering stop words, we extract
content words and compute the Jaccard index:

Scorq — |V(1}dw) N V(Tlransformed)|
- |V(T’raw) U V(Tlransformed” ’

where V(T is the set of content words in text 7.

4) Reasoning Resonance Analysis (ReRA): To evaluate
logical alignment, we use Bart-large-mnli [24] to predict the
probability of entailment from 71,y t0 Tiransformed- This forms
the reasoning score:

Scoresyn = fSyntacticAnalysis (TraWa Ttransformed) .

3)

“4)

Scorerea = f ReasoningAnalysis (ﬂaw, ﬂransformed) ‘= Pentail -

D. LLM-based Resonance Score Calculation

MFGAF uses LLMs to integrate the four resonance scores
per perspective. Prior to evaluation, all scores are min-max
normalized to [0, 1].

1) LLM-Based Consistency Evaluation: For each perspec-
tive, the LLM receives Ti.w, 1iransformed, and the normalized
scores. It outputs a score (0-100) and rationale via a struc-
tured prompt.

2) Multi-LLM Assessment for Enhanced Robustness:
Three different LLMs conduct evaluations independently.
Their average is used as the final score.

Schematic diagram of the proposed MFGAF framework

3) Reflection Process for Inconsistent Evaluations: If
Var(Scores) < Tyariances COMpute:

3

1
Scoregnag = 3 ; Score;. 5
Otherwise, apply reweighting:
3
Scoreginag = Z w; - Score;, sz =1. (6)
i=1

The weights w; may reflect the historical accuracy or the
confidence of the model.

E. Final Decision Mechanism

Once final consistency scores from RRA and CRA are
obtained, the overall detection score is computed:

)

Scorefinal = &+ SCOr€rewrite + (1 - 04) : Scorecomp]etion~

If Scorefny > 7, the text is classified as LLM-generated;
otherwise, as human-authored. Parameters «, 7, and Tyarance
are optimized using validation data.

This fusion strategy combines the diversity of linguistic
signals with LLM-guided integration, ensuring a robust and
generalizable detection process.

IV. EXPERIMENTS

In this section, we evaluate the performance of the pro-
posed MFGAF for detecting LLM-generated text. The ex-
periments aim to address the following research questions:

¢« RQ1: How does the proposed method compare with
state-of-the-art techniques in detecting LLM-generated
text?



e« RQ2: To what extent do the individual components
of the proposed framework contribute to its overall
performance?

o RQ3: What is the robustness of the proposed method
when faced with common text manipulations like
rephrasing and length variation?

e RQ4: Can the method maintain good performance
levels even in a few-shot setting with limited labeled
data?

o RQS5: How does the choice of large language models
(LLMs) affect detection performance? Specifically, does
model scale (e.g., GPT-3.5 vs. smaller models) signifi-
cantly influence detection accuracy?

e RQ6: How does MFGAF balance detection accuracy
and inference latency, particularly when employing
lightweight LLMs?

A. Experimental Setup

1) Datasets: We conduct experiments on datasets pro-
vided in Raidar: GeneRative Al Detection viA Rewriting
[20], covering a wide range of text types, including cre-
ative writing, student essays, code, reviews, and academic
abstracts. These datasets include human-written and LLM-
generated texts, where the LLM-generated texts are created
using GPT models (GPT-3.5-turbo and GPT-4). Notably, this
dataset has also been used in other studies, further validating
its robustness and applicability for Al detection tasks [25].

2) Benchmark Methods and Evaluation: We evaluate MF-
GAF against several state-of-the-art detection approaches,
categorized as follows:

o Probability-Based Methods: These rely on internal
model probabilities or scores, including DetectGPT [8],
Fast-DetectGPT [21], and Ghostbuster [26].

o Text Pattern Analysis Methods: These analyze linguis-
tic features and textual patterns without requiring direct
model probabilities. This category includes methods like
GPTZero [27], DNA-GPT [19] (which analyzes diver-
gent n-grams), SeqXGPT [17] (focusing on sentence-
level features), and Raidar [20] (which uses rewriting).

Evaluation is based on Fl-score across six text domains
(News, Creative Writing, Student Essay, Code, Reviews,
Abstracts), sourced from the dataset used in [20]. Additional
robustness assessments are performed under text manipula-
tions like rephrasing and truncation.

3) Implementation Details: The key hyperparameters of
MFGAF include the word mask ratio for perturbation, the
threshold 7yahance 1N the Reflection Process for Inconsis-
tent Evaluations, and the parameter « in the Final deci-
sion mechanism module. Our experimental setup utilizes
gpt-3.5-turbo as the base LLM for all methods, with
both temperature and top_p set to 0.9. The mask ratio
is set to 0.4, aiming to mask short sentences as a whole.
Furthermore, Tyariance and « are tuned from the set {0.1, 0.2,
0.4, 0.5, 0.6, 0.8}, and their optimal values of 0.5 and 0.6
are selected.

TABLE I
F1-SCORE COMPARISON ACROSS DATASETS

Methods \News Creative Essays Code Reviews Abstracts
Probability-Based Methods

DetectGPT [8] 5825 60.74 46.03 67.89 70.16 68.07
Fast-DetectGPT [21](59.32 62.19 60.56 7534 74.23 75.97
Ghostbuster [26] 53.01 4193 43.54 67.07 72.67 77.72
Text Pattern Analysis Methods

GPTZero [27] 55.89 50.73 53.09 63.13 66.95 66.04
DNA-GPT [19] 5732 63.13 59.76 87.32 74.67 69.87
SeqXGPT [17] 5698 59.65 6643 79.28 78.64 72.67
Raidar [20] 6149 63.76 6591 92.88 85.05 80.97
Ours (MFGAF) ‘66.47 65.21 68.42 95.01 89.79 83.53

B. Overall Performance (RQI)

To answer RQI1, we compare MFGAF’s performance
against the selected baseline methods across all six domains.
Table I summarizes the F1 scores.

The results clearly demonstrate MFGAF’s superior perfor-
mance. It achieves the highest Fl-score across all evaluated
domains, surpassing even the strongest baseline (Raidar) by
a significant margin. This consistent top-tier performance
underscores the effectiveness of MFGAF’s multi-faceted
granular analysis approach compared to existing zero-shot
techniques.
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Fig. 3. Ablation Study Results

C. Component Analysis (RQ2)

To address RQ2, we perform an ablation study by system-

atically removing or altering key components of MFGAF:

o View Removal: Evaluating performance using only
RRA or only CRA.

o Dimension Exclusion: Evaluating performance after
removing each of the four granular analysis dimensions
(Semantic, Syntactic, Lexical, Reasoning) individually.

e Score Aggregation: Replacing the LLM-based aggre-
gation with a simple weighted sum (weights tuned on
validation data).

The results of these ablation experiments are illustrated in
Fig. 3, clearly demonstrating the performance impact of
each component. Removing any component degrades per-
formance, indicating their collective contribution. The most
significant performance drops occur when the LLM-based



aggregation mechanism is removed (an average decrease in
Fl-score of 7. 7%) and the Reasoning Resonance Analysis
(an average decrease in Fl-score of 6. 6%). These findings
validate the necessity of analyzing multiple dimensions and
highlight the benefit of the adaptive LLM-based score inte-
gration strategy.

D. Robustness against Text Manipulations (RQ3)

To evaluate the robustness of MFGAF, we test its perfor-
mance under three types of text manipulations: rephrasing,
truncation, and expansion. These operations simulate real-
world variations and assess the generalizability of detection
methods. Rephrasing changes wording while keeping mean-
ing intact, potentially affecting semantic consistency [28].
Truncation shortens the text, which may compromise coher-
ence and completeness [19], while expansion adds content
that can introduce redundancy or unnecessary elaboration
[29].

As shown in Table II, the MFGAF framework performs
well even under significant text modifications, maintaining
high detection accuracy across different datasets. These
results suggest that the proposed framework is resilient to
common text manipulations, making it a reliable tool for
detecting LLM-generated content in diverse scenarios.

TABLE 11
PERFORMANCE UNDER TEXT MANIPULATION

Manipulation |News Creative Essays Code Reviews Abstracts

Type

Rephrasing {5899 6044 61.22 82.39 76.22 79.45
Truncation 59.02 60.20 6094 78.11 74.83 77.01
Expansion 59.56 61.01 62.04 8532 80.14 81.60

E. Few-shot Performance (RQ4)

We also evaluate the framework in a few-shot learning
scenario, where we train the model with limited labeled data
(ranging from 10 to 100 samples per text type). The results
in Fig. 4 demonstrate that the proposed method remains
effective even with small amounts of labeled data, making it
suitable for real-world applications where labeled examples
are scarce.
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Fig. 4. Few-shot Detection Performance

F. Impact of Detection Model (RQ5)

In our experiments, we explore the impact of different
large language models (LLMs) on detection performance.
Specifically, we assess the performance of various LLMs,

such as GPT-3.5, Ada, Text-Davinci-002, GPT-4, and Llama-
7B, under the same experimental setting. Our findings indi-
cate that larger models, such as GPT-3.5 and GPT-4, consis-
tently outperform smaller models, yielding better detection
accuracy across different datasets. This suggests that the
model size plays a significant role in the effectiveness of
LLM-generated text detection. Table III shows the detection
performance comparison across different models.

TABLE III
IMPACT OF DIFFERENT DETECTION MODELS ON PERFORMANCE

Methods \News Creative Essays Code Reviews Abstracts
GPT-3.5 l66.47 6521 68.42 9501 89.79  83.53
Ada 60.32 59.14 61.28 84.12 80.56  75.20
Text-Davinci-002|62.45 60.28 63.72 87.80 82.90  78.11
GPT-4 69.15 68.23 72.34 96.72 91.80  85.63
Llama-7B 61.22 5998 62.17 81.34 79.12 74.55

G. Accuracy vs. Latency Trade-off Analysis (RQ6)

To address RQ6, we evaluate the trade-off between detec-
tion performance (average Fl-score) and inference latency
for MFGAF using different LLM configurations, including
large cloud-based models and smaller local alternatives. The
results, along with the Raidar baseline, are summarized in
Table IV.

TABLE IV
ACCURACY (F1 SCORE) VS. INFERENCE LATENCY (TESTED ON
NVIDIA A100, 80GB RAM, INTEL XEON GOLD 6338 CPU)

Model Configuration F1 Score (Avg %) Latency (s)

MFGAF (using GPT-4) 80.65 4.48
MFGAF (using GPT-3.5) 78.07 2.75
MFGAF (using Local 70B) 79.20 3.01
MFGAF (using Local 7B) 74.81 2.21
Raidar (Baseline) [20] 75.01 4.25

As shown in Table IV, there is a clear trade-off between
accuracy and latency. GPT-4 achieves the highest accuracy
(80.65%) but incurs the longest latency (4.48 seconds). GPT-
3.5 provides a more balanced option with an F1 score of
78.07% and lower latency (2.75 seconds), outperforming the
Raidar baseline (4.25 seconds) in both aspects.

For scenarios requiring faster inference or offline deploy-
ment, lightweight local models offer practical alternatives.
The 7B local LLM delivers the lowest latency (2.21 seconds),
albeit with a slightly reduced F1 score (74.81%). This makes
it suitable for real-time or edge deployments where speed
is prioritized over accuracy. The 70B local model improves
accuracy (79.20%) at the cost of increased latency (3.01
seconds) and higher hardware resource demands.

In summary, MFGAF offers flexibility in balancing ac-
curacy and latency. GPT-3.5 serves as a strong default
for general-purpose use, while GPT-4 delivers maximum
accuracy when latency is less critical. For latency-sensitive



applications, the 7B local model enables the fastest inference
with acceptable performance trade-offs.

V. CONCLUSION

In conclusion, we proposed MFGAF to address the chal-
lenges of detecting LLM-generated text. By incorporating
the Multi-faceted Concordance and Multi-granular Textual
Dissection modules, MFGAF enables a more comprehensive
understanding of both holistic and granular textual consis-
tencies. This design supports robust detection across di-
verse LLM-generated content. Furthermore, the LLM-based
Resonance Score Calculation module adaptively integrates
analysis results to further enhance detection accuracy.

Experiments demonstrate that MFGAF outperforms exist-
ing approaches, establishing a new benchmark in zero-shot
detection scenarios. Nonetheless, its higher computational
cost may limit efficiency in large-scale deployments.

Future work may explore the modular and extensible de-
sign of MFGAF for cross-modal detection, including LLM-
generated images, audio, and video, which is becoming in-
creasingly important as generative media continues to evolve.
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